Optimization of Pool and Tournament Play in the Top Swedish Handball League Jeffrey Larson Mikael Johansson KTH - Royal Institute of Technology

Contributions

- Optimal schedule design for *Elitserien* to be used for 2013-14 season
- Necessary conditions for schedulability of HAP sets

Problem

- 14-team league; owners want more than 26 games, but not 39 games in a triple round robin
- Would like to form two divisions which hold internal single round-robin tournaments before the main tournament
- Want very fair home-away patterns
- Desire a template they can use on their own
- Otherwise standard requirements, so hopefully the results are generally useful

Home/Away Pattern Sets

- Tournament scheduling often simplified by constructing home/away pattern (HAP) sets
- Desirable home-away patterns for each team: number of breaks and when they occur

Team 1	AHAHA
Team 2	AAHAH
Team 3	AHHAH
Team 4	HAHAH
Team 5	HHAHA
Team 6	HAAHA

An Optimal HAP Set

- Every *n*-team RRT, *n* even, must have at least n-2 breaks, DeWerra (1981)
- For an *n*-team RRT, *n* odd, there exists a unique no break tournament, Fronček (2005)

BAHAHAH HBAHAHA AHAHAHAHAHA **AHBAHAH** AHAHAHAHAHH HAHBAHA AHAHAHAHAH AHAHAHAHAH **AHAHBAH HAHAHBA** AHAHAHAHAHAH **AHAHAHB** AHAHHAHAHAH AHHAHAHAHAH or HAAHAHAHAHA BHAHAHA ABHAHAH HAHAAHAHAHA HABHAHA HAHAHAHAHAHA AHABHAH HAHAHAHAHAHA HAHABHA HAHAHAHAHA HAHAHAHAHAA AHAHABH HAHAHAB HAHAHAHAHAH

Not every HAP set is schedulable

Teams to Numbers

Additional requests and concerns can be addressed when assigning teams to numbers:

- Venue availabilities; desired derby games
- More meetings between the top teams and between the bottom teams in the last weeks.

This can be accomplished by solving a small integer program

League Requirements

- 1. Each 7-team division must hold a SRRT to start the season.
- 2. This must be followed by two SRRTs between the entire league, the second being a mirror of the first.
- 3. There must be a minimum number of breaks in the schedule.
- 4. Each team has one bye during the season (to occur during the divisional RRT).
- 5. The number of home and away games played by a team cannot differ by more than 1.
- 6. Any pair of teams must have consecutive meetings occur at different venues. (AVR)
- 7. Each division must have 3 pairs of complementary schedules.

Simple Condition

For a HAP set S to be schedulable, for any two teams t_1 and t_2 in the same division, there must be periods p_1 in Part I and p_2 in Part II such that

$$S(t_1, p_1) = H$$
 and $S(t_2, p_1) = A$,
 $S(t_1, p_2) = A$ and $S(t_2, p_2) = H$.

Theorem

For an n-team tournament, $\frac{n}{2}$ odd, with a divisional RRT before a full-league DRRT, there are

$${}_{\frac{n}{2}}P_{\frac{n-2}{4}} \times \left(\frac{n+2}{4}\right)^3 \times \frac{n-2}{4}!$$

unique HAP sets satisfying the requirements, except possibly for the AVR, with $\frac{n-2}{4}$ pairs of complementary schedules within each division.

For the 14-team Elitserien: 80640 HAP sets.

Latin Square Condition

Build an $n \times n$ array, where each entry (i, j) is a vector of periods when it is possible for teams *i* and j to meet.

- If (i, j) has only one entry, remove that value (if possible) from any vector (i, k), $k \neq j$ and any vector (k, j), $k \neq i$.
- If (i, j) has more than one entry, see if any value is unique in a row or column. Replace (i, j) by that value.
- ullet Stop if any (i,j) is empty, or no change is observed after checking the above two conditions for all (i, j).

		1	2	3	4	5	6
_	1						
	2	[2,3,4,5]					
	3	[3,4,5]	[2]				
	4	[1,2,3,4,5]	[1]	[1,2]			
	5	[1]	[1,2,3,4,5]	[1,3,4,5]	[2,3,4,5]		
	6	[1,2]	[1,3,4,5]	[1,2,3,4,5]	[3,4,5]	[2]	

Efficiency

n	HAP Sets	Unschedulable	Simple Condition	Latin Square Condition
6	24	20	8 (40%)	20 (100%)
10	1080	998	396 (40%)	998 (100%)
14	80640	79024	30720 (39%)	75995 (96%)

Result: Optimal Template

0	-2	3	-4	5	-6	7	-8	9	-5	6	-7	10	-11	12	-13	4	-14	2	-3	
-7	1	0	-3	4	-5	6	-9	7	-12	10	-6	5	-4	11	-14	13	3	-1	8	• • •
																	-2			
- 5	6	-7	1	-2	3	0	-11	10	-6	5	-13	12	2	-14	8	-1	9	-3	7	• • •
4	0	-6	7	-1	2	-3	13	-14	1	- 4	3	-2	8	-7	9	-10	-11	6	-12	• • •
3	-4	5	0	-7	1	-2	12	-13	4	-1	2	-8	14	-3	7	-9	10	-5	-11	• • •
2	-3	4	-5	6	0	-1	14	-2	3	-8	1	-9	-10	5	-6	11	-12	13	-4	• • •

0	9	-10	11	-12	13	-14	1	-3	-9	7	-11	6	-5	10	-4	12	-13	14	-2	• • •
14	-8	0	10	- 11	12	-13	2	-1	8	-3	-10	7	-12	13	-5	6	-4	11	-14	• • •
13	-14	8	-9	0	11	-12	3	-4	14	-2	9	-1	7	-8	-11	5	-6	12	-13	• • •
12	-13	14	-8	9	-10	0	4	-12	13	-14	8	-3	1	-2	10	-7	5	-9	6	• • •
-11	0	13	-14	8	-9	10	-6	11	2	-13	14	- 4	9	- 1	3	-8	7	-10	5	• • •
-10	11	-12	0	14	-8	9	-5	6	-11	12	4	-14	3	-9	1	-2	8	-7	10	• • •
-9	10	-11	12	-13	0	8	-7	5	-10	11	-12	13	-6	4	2	-3	1	-8	9	• • •